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Abstract
We report various many-body theoretical approaches to the nonlinear decay
rate and energy loss of charged particles moving in an interacting free electron
gas. These include perturbative formulations of the scattering matrix, the
self-energy and the induced electron density. Explicit expressions for these
quantities are obtained, with inclusion of exchange and correlation effects.

PACS numbers: 45.50.Jf, 71.10.Ca, 05.30.Fk

1. Introduction

The energy loss of non-relativistic charged particles entering a metal is primarily due to the
creation of electron–hole pairs and collective excitations in the solid, interactions with the
nuclei only becoming important when the velocity of the projectile is much smaller than
the mean speed of the electrons in the solid [1].

The degenerate interacting free electron gas (FEG) provides a good model to describe a
regime in which electrons are responsible for the energy-loss process. The inelastic decay
rate and energy loss of charged particles in FEG have been calculated for many years in the
first-Born approximation or, equivalently, within linear response theory. It is well known that
these first-order calculations predict an energy loss that grows with the square of the projectile
charge,Z1e, and provide a good approximation when the velocity of the projectile is much
larger than the average velocity of the target electrons. However, when the velocity of the
projectile decreases non-linearities become apparent. An important example is provided by the
existing differences between the energy loss of protons and antiprotons [2–4], which cannot
be accounted for within linear-response theory. These differences were then successfully
accounted on the basis of second-order perturbative calculations that used the random-phase
approximation (RPA) and treated the moving charged particle as a prescribed source of energy
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and momentum [5–9]. Beyond-RPA calculations of this so-calledZ3
1 effect have been reported

only very recently in the limit of low velocities [10].
In this paper, we report various many-body theoretical approaches to the quadratic decay

rate and energy loss of charged particles moving in an interacting FEG, which include
exchange-correlation (xc) effects and treat the moving charged particle as part of the many-
body interacting system. First of all, we present a fully quantum treatment of the probe
particle, which we assume to be distinguishable from the electrons in the Fermi gas. We
assign a propagator to this particle, and then follow procedures of many-body perturbation
theory to derive explicit expressions for the scattering matrix. From the knowledge of this
matrix, both the decay rate and the energy loss of the moving particle can be evaluated either
within the RPA or by including short-range xc effects. We also derive an explicit expression
for the self-energy of the probe particle, which enables us to present an alternative derivation
of the decay rate.

The rest of this paper is organized as follows: A diagrammatic analysis of the decay
rate of a moving charged particle in FEG is presented in section 2. The decay rate and
stopping power are calculated up to third order in the projectile charge from the knowledge
of the scattering matrix. It is shown that for a heavy projectile the decay rate agrees with the
imaginary part of the projectile self-energy, and that the stopping power agrees with the result
of quadratic-response theory. Our conclusions are presented in section 3. Atomic units are
used throughout, i.e.,e2 = h̄ = me = 1.

2. Diagrammatic analysis

We consider the interaction of a moving probe particle of chargeZ1 and massM with FEG
of densityn. The probe particle is assumed to be distinguishable from the electrons in the
Fermi gas, which is described by an isotropic homogeneous assembly of interacting electrons
immersed in a uniform background of positive charge and volumeV .

In the representation of second quantization, the interaction-picture perturbing
Hamiltonian reads

H ′
I (t) = −Z1

∫
d3r d4Xψ†(x) ψ(x) v(x,X) ψ̃†

(X) ψ̃(X)

+
1

2

∫
d3r d4x ′ψ†(x) ψ(x) v(x, x ′) ψ†(x ′) ψ(x ′) +HBG

I (2.1)

where v(x, x ′) [x = (r, t)] is the instantaneous Coulomb interaction and the last term
represents the interaction of electrons and probe particle with the positive background. The
field operatorsψ(x) andψ†(x) destroy and create an electron at timet and pointr, while
ψ̃(X) and ψ̃†

(X) destroy and create the probe particle at timet and pointR. Annihilation
operators can be written as

ψ(x) =
∑
i

eiωi t φi(r) ai (2.2)

and

ψ̃(X) =
∑
i

eiωi t φ̃i (R)Ai (2.3)

where the operatorsai andAi annihilate an electron and the probe particle in the one-particle
free statesφi(r) andφ̃i(R) of energyωi . As we are dealing with a homogeneous system, these
states can be taken to be plane-wave states. We choose states of momentumk and energy
ωk = k2/2 for electrons, and momentump and energyωp = p2/(2M) for the probe particle.
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The scattering matrix can be written as a time-ordered exponential [11],

S = T

{
exp

[
−i

∫ ∞

−∞
dt e−η |t |H ′

I (t)

]}
(2.4)

whereH ′
I is the perturbing Hamiltonian of equation (2.1),T is the chronological operator and

η is a positive infinitesimal.
In the interaction picture, electron and probe-particle propagators can be expressed as

G(x, x ′) = −i
〈0,�0| T ψI (x) ψ†

I (x
′) S |0,�0〉

〈0,�0| S |0,�0〉 (2.5)

and

D(X,X′) = −i
〈0,�0|T ψI (X)ψ

†
I (X

′) S |0,�0〉
〈0,�0| S |0,�0〉 (2.6)

where|0,�0〉 = |0〉|�0〉 represents the non-interacting free Fermi sea with no probe particle.
Non-interacting electron and probe-particle propagators are easily found from equations (2.5)
and (2.6) given by the following simple expressions:

G0(x, x ′) = −i 〈�0| T ψ(x)ψ†(x ′) |�0〉 (2.7)

and

D0(X,X′) = −i 〈0|T ψ(X)ψ†(X′) |0〉 (2.8)

respectively.
We note that the probe-particle propagator is a retarded function, i.e., it is different

from zero only if t > t ′. As a consequence, probe-particle bubbles do not contribute to
the diagrammatic expansion. Therefore, the expansion of equation (2.6) does not depend on
whether the probe particle is a fermion or a boson, and there is no probe-particle contribution
to the denominator of equations (2.5) and (2.6).

2.1. Scattering approach

Let us consider the process corresponding to the creation of a single electron–hole pair where
the system is carried from an initial stateA†

i |0,�0〉 to a final statea†f1
ai1A

†
f |0,�0〉. The

scattering-matrix element for this process is

Sf,f1;i,i1 =
〈0,�0| af1 a

†
i1
Af S A

†
i |0,�0〉

〈0,�0| S |0,�0〉 . (2.9)

Similarly, one may consider a double excitation in which the system is carried from an
initial stateA†

i |0,�0〉 to a final statea†f1
a
†
f2
ai1ai2A

†
f |0,�0〉. The matrix element for this

process is

Sf,f1,f2;i,i1,i2 = 〈0,�0| af1 af2 a
†
i1
a
†
i2
Af S A

†
i |0,�0〉

〈0,�0| S |0,�0〉 . (2.10)

After introduction of the Hamiltonian of equation (2.1) into equation (2.4), the matrix
elementsSf,f1;i,i1 andSf,f1,f2;i,i1,i2 of equations (2.9) and (2.10) can be expanded in powers
of the coupling constante2. Then, the use of Wick’s theorem yields explicit expressions for the
various contributions to this expansion, in terms of the non-interacting propagatorsG0(x, x ′)
andD0(X,X′). Introducingstandard Fourier representations and taking the free-particlestates
to be momentum eigenfunctions, all contributions to the scattering matrix can be derived from
scattering-like Feynman diagrams as follows:



7610 T del Ŕıo Gaztelurrutia and J M Pitarke

1. Draw all distinct scattering diagrams in momentum space. All particle lines must be
directed. Different ways of directing them that are not topologically equivalent give
distinct contributions. Exclude probe-particle bubbles.

2. Assign momentum and energy to all particle and interaction lines so that the sum
of the four-momenta entering a vertex equals the sum of four-momenta leaving the
vertex.

3. Include an overall factor 2π V δk δ(k
0), which represents total momentum and energy

conservation.δk is the Kroneckerδ symbol andδ(k0) is the Diracδ function.
4. For every external particle line include a factorV −1/2.
5. For every internal electron line includeiG0

k, whereG0
k is the non-interacting one-electron

propagator in momentum space:

G0
k = 1 − nk

k0 − ωk + iη
+

nk

k0 − ωk − iη
(2.11)

(k, k0) being the four-momentum of the particle,nk the occupation number(nk =
$(qF − |q|), whereqF is the Fermi momentum) andωk = k2/2.

6. For every internal probe-particle line include a factor iD0
p, whereD0

p is the non-interacting
probe-particle propagator in momentum space:

D0
p = 1

p0 − ωp + iη
(2.12)

(p, p0) being the four-momentum of the particle, andωp = p2/(2M).
7. For every probeparticle–electron and electron–electron interaction line, include a factor

iZ1vq and−ivq respectively,vq being the Fourier transform of the bare Coulomb potential.
8. For every electron loop include a factor−2.
9. Integrate over free four-momenta,

∫
d4q/(2π)4.

Since all scattering-matrix elements include delta functions accounting for momentum
and energy conservation, one may factorize them as follows:

Sf,f1;i,i1 = 2πδpf−pi−kf1+ki1
δ
(
ωpf − ωpi − ωkf1

+ ωki1

)
Tf,f1;i,i1 (2.13)

and

Sf,f1,f2;i,i1,i2 = 2πδpf−pi−kf1−kf2+ki1+ki2
δ
(
ωpf − ωpi − ωkf1

− ωkf2
+ ωki1

+ ωki2

)
×Tf,f1,f2;i,i1,i2 (2.14)

whereki1,i2,f1,f2 andpi,f represent the initial and final momenta of target electrons and probe

particle, respectively, with energiesωki1,i2,f1,f2
= k2

i1,i2,f1,f2
/2 andωpi,f = p2

i,f /(2M).

The probabilitiesγ single
q andγ double

q for the probe particle to transfer four-momentumq

(q0 > 0) to FEG by creating single and double excitations are derived by summing the matrix
elements over all available initial and final electron states and all final probe-particle states
[8]:

γ
single
q = 4π

∑
k

nk (1 − nk+q) |Tq,k(pi)|2δ
(
q0 + ωk − ωk+q

)
δ[q0 − q · v + q2/(2M)]

(2.15)
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(a) (b) (c)

Figure 1. (a) Direct, (b) linear and (c) quadratic contributions to the screened interaction. Dashed
lines represent the bare Coulomb interaction, −ivq. Two- and three-point loops represent time-
ordered density correlation functions iχq and −2Yq1,q2 , respectively.

and

γ double
q = 8π

∑
q1

∫
dq0

1

∑
k1

∑
k2

nk1

(
1 − nk1+q1

)
nk2

(
1 − nk2+q−q1

) |Tq,q1,k1,k2(pi)|2

× δ
(
q0

1 + ωk1 − ωk1+q1

)
δ
(
q0 − q0

1 + ωk2 − ωk2+q−q1

)
× δ[q0 − q · v + q2/(2M)] (2.16)

where v represents the velocity of the probe particle.
In these equations recoil has not been neglected. Moreover, the quantum character

of the probe particle is implicit in the T-matrix elements, which include the probe-particle
propagator D0(p). Therefore, they generalize the results of reference [8] to the case of an
arbitrary distinguishable probe particle.

Hence, the total decay rate of the probe charge is given by the following expression:

τ−1(p) =
∑

q

∫ ∞

0
dq0

[
γ

single
q + γ double

q + · · ·
]
. (2.17)

The average energy lost per unit length travelled by the probe particle, i.e., the so-called
stopping power of the target is obtained by inserting q0/v inside the integrand in equation
(2.17):

− dE

dx
(p) = 1

v

∑
q

∫ ∞

0
dq0 q0

[
γ

single
q + γ double

q + · · ·
]
. (2.18)

It is well known that the decay rate and energy loss cannot be computed by
simply evaluating the lowest-order tree-level Feynman diagrams because of severe infrared
divergences due to the long-range Coulomb interaction. Instead, one needs to resume electron-
loop corrections and expand the scattering matrix in terms of the dynamically screened
Coulomb interaction.

Direct, linear and quadratic contributions to the screened interaction are represented in
figure 1. Dashed lines [−ivq] represent the bare Coulomb interaction. The full bubble and
triangle, denoted iχq and −2 Yq1,q2 , represent the sum of all possible Feynman diagrams
joining two and three points, and thus correspond to the Fourier transform of time-ordered
density correlation functions of the interacting FEG:

χq =
∫

d4x1 e−i[q·(r1−r2)−q0(t1−t2)] χ(x1, x2) (2.19)

and

Yq1,q2 =
∫

d4x1

∫
d4x2 e−i[q1·(r1−r2)−q0

1 (t1−t2)] e−i
[
(q1+q2)·(r2−r3)−

(
q0

1 +q0
2

)
(t2−t3)

]
Y (x1, x2, x3)

(2.20)

with

χ(x, x ′) = −i〈,0|T ρ̃H(x)ρ̃H(x
′)|,0〉 (2.21)
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++=

++=

+++

(a)

(b)

Figure 2. (a) The interacting RPA two-point density correlation function, represented by a full
bubble, is obtained by summing over the infinite set of diagrams that contain a string of empty
bubbles. (b) The interacting RPA three-point density correlation function, represented by a full
triangle, is obtained by summing over the infinite set of diagrams that combine three strings of
empty bubbles through an empty triangle.

and

Y (x, x ′, x ′′) = − 1
2 〈,0|T ρ̃H(x)ρ̃H(x

′)ρ̃H(x
′′)|,0〉. (2.22)

Here, |,0〉 represents the normalized exact many-electron ground state, and ρ̃H(x) =
ρ̂H(x)− n is the exact Heisenberg electron-density fluctuation operator, both in the absence

of probe particle.
Introducing complete sets of energy eigenstates between the Heisenberg fields of equations

(2.21) and (2.22), one obtains spectral representations for χq and Yq1,q2 . We find

χq = V −1
∑
n

∣∣(ρq)n0
∣∣2

[
1

q0 − ωn0 + iηq0
− 1

q0 + ωn0 + iηq0

]
(2.23)

and

Yq1,q2 = −1

2
V −1

∑
n,l


 (

ρq1

)
0n

(
ρq3

)
nl

(
ρq2

)
l0(

q0
1 − ωn0 + iηq0

1

) (
q0

2 + ωl0 + iηq0
2

)

+

(
ρq2

)
0n

(
ρq1

)
nl

(
ρq3

)
l0(

q0
2 − ωn0 + iηq0

2

) (
q0

3 + ωl0 + iηq0
3

)

+

(
ρq3

)
0n

(
ρq2

)
nl

(
ρq1

)
l0(

q0
3 − ωn0 + iηq0

3

) (
q0

1 + ωl0 + iηq0
1

) + (q2 → q3)


 (2.24)

where ηq = η sgn(q0), ωnl = En − El , q3 = −(q1 + q2) and (ρq)nl is the matrix element
of the Fourier transform of the electron-density operator taken between exact many-electron
states of energy En and El .

In the RPA, density correlation functions are obtained by summing over all ring-like
diagrams, as shown in figure 2, thereby neglecting all self-energy, vertex and vertex-ladder
insertions (see figure 3). Hence,

χRPA
q = χ0

q + χ0
q vq χ

RPA
q (2.25)
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(a) (b)

  

(c)

Figure 3. (a) Self-energy, (b) vertex and (c) ladder insertions, which are neglected within RPA.

and

YRPA
q1,q2

= KRPA
q1

Y 0
q1,q2

KRPA
−q2

KRPA
−q3

(2.26)

where χ0
q and Y 0

q1,q2
are the non-interacting FEG density correlation functions and Kq is the

so-called inverse dielectric function:

KRPA
q = 1 + χRPA

q vq. (2.27)

Improvements on the RPA are typically carried out by introducing an effective e–e
interaction [12],

ṽq = vq
(
1 −Gq

)
(2.28)

where Gq is the so-called local-field factor, first introduced by Hubbard [13], accounting for
all self-energy, vertex and vertex-ladder insertions not present in the RPA. Accordingly, the
density correlation functions χq and Yq1,q2 are found to be of the RPA form, but with all e–e
bare Coulomb interactions vq replaced by ṽq [14]:

χq = χ0
q + χ0

q ṽq χq (2.29)

and

Yq1,q2 = K̃q1 Y
0
q1,q2

K̃−q2 K̃−q3 (2.30)

where the so-called test charge–electron inverse dielectric function has been introduced
[15, 16]:

K̃q = 1 + χq ṽq . (2.31)

This inverse dielectric function screens the potential generated by a distinguishable test
charge and ‘ felt’ by an electron, whereas the so-called test charge–test charge inverse
dielectric function Kq of equation (2.27) screens the potential both generated and ‘ felt’ by a
distinguishable test charge:

Kq = 1 + χq vq. (2.32)

Now we proceed to expand the matrix elements of equations (2.9) and (2.10) in powers
of the dynamically screened Coulomb interaction. At this point, we will only introduce self-
energy and vertex insertions that can be described with the use of a static local-field factor
[Gq → Gq,0]. Within this approximation, all processes corresponding to the creation of single
and double excitations can be represented by diagrams of figure 4 (as in the RPA there are no
contributions, up to second order in Z1, from third- and higher-order excitations [8]). Thus,
one finds

Tq,k = iZ1 V
−1 vq K̃q + Z2

1 V
−1

∫
d4q1

(2π)4

[
2 ṽq vq1 vq−q1 D

0
p−q1

Yq,−q1

+ vq1 K̃q1 vq−q1 K̃q−q1 D
0
p−q1

(
G0
k+q1

+ G0
k+q−q1

)]
(2.33)
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(a) 

         

 

(b) 
 

Figure 4. Diagrammatic representation of the scattering-matrix elements of (a) equation (2.33)
and (b) equation (2.34). Thick and thin solid lines represent non-interacting probe-particle and
electron propagators, iD0

p and iG0
k
, respectively. Wiggly lines represent the screened e–e Coulomb

interaction, −iṽqK̃q , and thick discontinuous lines represent the screened interaction between
electrons and probe particle, −ivqK̃q

and

Tq,q1,k1,k2 = iZ1 V
−2

[
2 vq ṽq1 ṽq−q1 Yq,−q1 + vq K̃q vq−q1

K̃q−q1

(
G0
k1+q + G0

k1−q+q1

)
+ vq K̃q vq1

K̃q1

(
G0
k2+q + G0

k2−q1

)]
− iZ2

1 V
−2 vq1

K̃q1 vq−q1
K̃q−q1 D

0
p−q1

. (2.34)

As static local-field factors are known to be real (ImGq,0 = 0), one easily finds

ImKq = vq |K̃q |2 Imχ0
q (2.35)

and

Im K̃q = ṽq |K̃q |2 Imχ0
q (2.36)

where Kq and K̃q are the inverse dielectric functions of equations (2.27) and (2.32), with the
density correlation function χq being given in both cases by equation (2.29).

Introduction of equations (2.33) and (2.34) into equations (2.15) and (2.16) yields the
following results, valid up to third order in the probe particle–electron screened interaction:

γ
single
q = −2Z2

1 V
−1 vq

{
ImKq + 4Z1

∫
d4q1

(2π)4
vq1 vq−q1

[
Im K̃q

× Im
(
D0
p−q1

Y 0
q,−q1

K̃q1 K̃q−q1

)
+ Im

(
K̃

∗
q K̃q1 K̃q−q1 D

0
p−q1

Iq,q1

)] }

× δ[q0 − q · v + q2/(2M)] $(q0) (2.37)
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and

γ double
q = −16Z3

1 V
−1 vq

∫
d4q1

(2π)4
vq1

vq−q1

{
Im K̃q1 Im K̃q−q1 Re

(
K̃q D

0∗
p−q1

Y 0
q,−q1

)
+ Im K̃q−q1 Re

[
K̃q K̃

∗
q1

(
D0∗
p−q1

+ D0∗
p−q+q1

)
Iq1,q

]}
× δ[q0 − q · v + q2/(2M)] $

(
q0

1

)
$

(
q0 − q0

1

)
(2.38)

where we have defined the function Iq,q1 as

Iq,q1 = 1
2

[
Hq,q1 + Hq,q−q1 + i

(
Jq,q1 + Jq,q−q1

)]
(2.39)

with

Hq,q1 = −2π V−1
∑

k

nk (1 − nk+q)

[
δ
(
q0 + ωk − ωk+q

)
q0

1 + ωk − ωk+q1

− δ
(
q0 − ωk + ωk+q

)
q0

1 − ωk + ωk+q1

]
(2.40)

and

Jq,q1 = 2π2 V −1
∑

k

nk (1 − nk+q)δ
(
q0 + ωk − ωk+q

) [
(1 − nk+q1

) δ
(
q0

1 + ωk − ωk+q1

)

−nk+q−q1
δ
(
q0 − q0

1 + ωk − ωk+q−q1

)]
. (2.41)

Introduction of equations (2.37) and (2.38) into equations (2.17) and (2.18) yields the
total decay rate and the average energy loss of arbitrary particles that are distinguishable from
the electrons in the Fermi gas, with inclusion of static many-body local-field effects.

In order to compare our result with previous work, we now consider the case where the
probe particle is very heavy (M  1) and recoil can be neglected, i.e., ωp − ωp−q ∼ q · v.
In this approximation, the principal part of the non-interacting probe-particle propagator is
found to give no contribution to the integrals of equations (2.37) and (2.38), and one finds

γ
single
q = 2Z2

1 V
−1 vq

{
−ImKq + 4π Z1

∫
d4q1

(2π)4
vq1

vq−q1
δ
(
q0

1 − q1 · v
)

×
[
Im K̃q Re

(
Y 0
q,−q1

K̃q1 K̃q−q1

)
+ Re(K̃q

∗
K̃q1K̃q−q1 Iq,q1)

] }
× δ(q0 − q · v) $(q0) (2.42)

and

γ double
q = 16π Z3

1 V
−1 vq

∫
d4q1

(2π)4
vq1

vq−q1

[
Im K̃q1 Im K̃q−q1 Im

(
K̃q Y

0
q,−q1

)
+ 2 Im K̃q−q1 Im(K̃q K̃

∗
q1
Iq1,q)

]
× δ

(
q0

1 − q1 · v
)
δ(q0 − q · v)$

(
q0

1

)
$

(
q0 − q0

1

)
. (2.43)

These decay probabilities, which account for the existence of many-body static local-field
corrections, coincide in the RPA (Gq = 0) with those derived in reference [9] by treating the
probe particle as a prescribed source of energy and momentum.

Simplified expressions for the total decay rate and the average energy loss of heavy
(M  1) probe particles can be obtained with the aid of the following relationship, obtained
in reference [9], which relates the imaginary part of the non-interacting density correlation
function Y 0

q1,q2
with the function Hq,q1 of equation (2.40)

ImY 0
q1,q2

= 1
2

[
Hq1,−q2 + H−q2,q1 + H−q3,q2 + (q2 → q3)

]
. (2.44)
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Introduction of equations (2.42) and (2.43) into equations (2.17) and (2.18) yields, after some
algebra,

τ−1 = 4π Z2
1

∫
d4q

(2π)4
vq

{
−ImKq + 4π Z1

∫
d4q1

(2π)4
vq1

vq−q1
δ
(
q0

1 − q1 · v
)

×
[
f1(q, q1) + f2(q, q1) + f a3 (q, q1) + f b3 (q, q1) + f4(q, q1)

]}
× δ(q0 − q · v) $(q0) (2.45)

and1

− dE

dx
= 4π

v
Z2

1

∫
d4q

(2π)4
q0 vq

{
−ImKq + 4π Z1

∫
d4q1

(2π)4
vq1

vq−q1
δ
(
q0

1 − q1 · v
)

× [
f1(q, q1) + f2(q, q1) + f a3 (q, q1) + f5(q, q1)

] }
× δ(q0 − q · v) $(q0) (2.46)

where

f1(q, q1) = Im K̃q Re Y 0
q,−q1

Re K̃q1 Re K̃q−q1 (2.47)

f2(q, q1) = Re K̃q Hq,q1 Re K̃q1 Re K̃q−q1 (2.48)

f a3 (q, q1) = − 2 Im K̃q Hq1,q Im K̃q1 Re K̃q−q1 (2.49)

f b3 (q, q1) = − Re K̃q Hq,q1 Im K̃q1 Im K̃q−q1 (2.50)

f4(q, q1) = − 1
3 Im K̃q Re Y 0

q,−q1
Im K̃q1 Im K̃q−q1 (2.51)

and

f5(q, q1) = Im
(
K̃qK̃

∗
q1
K̃q−q1

)
Jq−q1,−q1 . (2.52)

Within RPA, the inverse dielectric functionsKq and K̃q coincide and equation (2.46) reduces
to the result of reference [8].

Equation (2.45) has not been reported before, even within the RPA approximation. In
next section we will show that it is equivalent to the result reported in reference [10], where
a derivation of the decay rate as the imaginary part of the on-shell self-energy of the probe
particle was sketched briefly.

2.2. Self-energy approach

Since we are considering the interaction of a moving probe particle with a spatially uniform
electron gas, invariant under translations, the exact probe-particle propagator can be written
in the form of an algebraic Dyson’s equation [11]

Dp = D0
p + D0

p 2p Dp (2.53)

which defines the self-energy 2p of the probe particle. With the aid of equation (2.12),
Dyson’s equation can be solved explicitly as

Dp = 1

p0 − ωp − 2p + iη
. (2.54)

1 The term f5(q, q1) of equation (2.46) is missing in equation (4.13) of reference [9]. This contribution to the energy
loss is found to be negligible at low and high velocities, and the inclusion of this term results, within RPA, in a Z3

1
correction to the stopping power that is at intermediate velocities lower than that reported in reference [9] by less than
10%. We note that the symmetrized empty three-point function defined in reference [9] is Mq,q1 = −Y 0

q,−q1
.
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Figure 5. The probe particle self-energy, up to third order in Z1. Thick solid lines represent
the exact probe-particle propagator, iDp . Dashed lines represent the bare Coulomb interaction,
−i vq. Two- and three-point loops represent time-ordered density correlation functions, iχq and
−2Yq1,q2 , respectively.

The energy and lifetime of the excited state (quasi-particle) obtained by adding a particle
to an interacting ground state are determined by the poles of the analytical continuation of the
one-particle Green function. Hence, the energy of the quasi-particle is ωp + Re2p, and the
probability for it to occupy a given excited state decays exponentially in time with the decay
constant

τ−1 = −2 Im2p (2.55)

with the self-energy calculated at the pole of the one-particle propagatorDp.
The self-energy can be represented diagrammatically as the sum of the so-called proper

self-energy insertions, i.e., all Feynman diagrams that cannot be separated into two pieces
by cutting a single particle line. Since the probe particle, of charge Z1, is assumed to be
distinguishable from the electrons in the Fermi sea, the self-energy may be expanded in
powers of Z1, diagrams of order Zn

1 containing n − 1 probe-particle propagators. For a
homogeneous electron gas, contributions from the uniform positive background are cancelled
by the sum of the so-called ‘ tadpole’ diagrams; therefore, after resuming all electron-loop
corrections, the self-energy of the probe particle can be represented diagrammatically up to
third order in Z1 as in figure 5. The sum of the first two diagrams represents the so-called
GW approximation, and the third diagram accounts for Z3

1 corrections to the decay rate of the
quasi-particle. One finds

2p = iZ2
1

∫
dq4

(2π)4
vq Dp−q

×
[
(1 + χq vq)− 2 iZ1

∫
d4q1

(2π)4
Dp−q1 Dp−q+q1 Yq,−q1 vq1

vq−q1

]
(2.56)

where χq and Yq1,q2 represent the exact density correlation functions of the interacting FEG,
as obtained from equations (2.23) and (2.24), respectively.

If the probe particle is an ion (M  1), the propagator Dp and the energy p0 entering
equation (2.56) can be safely approximated by the non-interacting propagatorD0

p and energy
ωp. Furthermore, recoil can be neglected, and one easily finds

D0
p−q = − 1

q0 − q · v − i η
. (2.57)

In order to exploit the symmetry properties of Yq1,q2 it is useful to rewrite the retarded probe-
particle propagator in terms of its Feynman version as follows:

D0
p−q = − 1

q0 − q · v + i ηq
− 2 iπ δ(q0 − q · v)$(q0). (2.58)
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Introducing equation (2.58) into equation (2.56) and noting that the time-ordered density
correlation functions χq and Yq1,q2 are invariant under the changes (q0 → −q0) and
(q0

1 → −q0
1 , q

0
2 → −q0

2 ), respectively, some work of rearrangement leads us to the following
expression:

2p,ωp = 2πZ2
1

∫
dq4

(2π)4
vq

[
(1 + χq vq)− 4

3
πZ1

×
∫

d4q1

(2π)4
Yq,−q1 vq1

vq−q1
δ
(
q0

1 − q1 · v
) ]

δ(q0 − q · v) $(q0). (2.59)

Within RPA, the density correlation functions χq and Yq1,q2 are those given by equations
(2.25) and (2.26). Beyond RPA, they are obtained from equations (2.29) and (2.30) in terms
of the non-interacting density correlation functions (χ0

q and Y 0
q1,q2

) and the effective e–e
interaction of equation (2.28). Hence, introduction of equation (2.59) into equation (2.55)
yields the following expression for the decay rate:

τ−1 = 4π Z2
1

∫
dq4

(2π)4
vq δ(q

0 − q · v)$(q0)

×
[
−ImKq +

4

3
π Z1

∫
d4q1

(2π)4
Im

(
K̃q Y

0
q,−q1

K̃q1 K̃q−q1

)

× vq1
vq−q1

δ
(
q0

1 − q1 · v
) ]

(2.60)

where Kq and K̃q represent the inverse dielectric functions of equations (2.27) and (2.32),
with the density correlation function χq being given in both cases by equation (2.29).

The equivalence of equations (2.45) and (2.60) follows from the expansion of the
imaginary part of K̃q Y

0
q,−q1

K̃q1K̃q−q1 in equation (2.60) and the use of equation (2.44)

and the symmetry properties of Y 0
q1,q2

and K̃(q0, q). However, while (2.45) has been derived
by only introducing self-energy and vertex insertions that can be described with the use of
a static local-field factor, we have now demonstrated that either equation (2.45) or equation
(2.60) can be used with inclusion of many-body dynamic local-field corrections.

Finally, we note that although both equation (2.45) (derived from equation (2.17))
and equation (2.60) (derived from equation (2.55)) represent the total decay rate, the
integrands of these integral representations do not necessarily coincide with the probability
(γ

single
q + γ double

q + · · ·) for the probe particle to transfer four-momentum q to the FEG.
Consequently, the stopping power of the FEG for the probe particle (see equation (2.46))
cannot be obtained by simply inserting q0/v inside the integral of equation (2.45) or equation
(2.60), and the knowledge of the self-energy alone is not, therefore, sufficient to calculate the
stopping power.

2.3. Quadratic response

In reference [10] the stopping power of a heavy probe particle was calculated using the
framework of quadratic response theory. It was found that

− dE

dx
= 4πZ2

1

∫
d4q

(2π)4
q0 vq δ(q

0 − q · v)$(q0)

×
[
−ImKR

q + 2πZ1

∫
d4q1

(2π)4
Im

(
K̃
R
q Y

R,0
q,−q1

K̃
R
q1
K̃
R
q−q1

)

× vq1
vq−q1

δ
(
q0

1 − q1 · v
) ]

(2.61)
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where KR
q , K̃

R
q and YRq1,q2

represent the retarded counterparts of Kq , K̃q and Yq1,q2 ,
respectively.

In order to compare this result with the one quoted in section 2 we must recall the
relationship between the time-ordered and retarded functions.

In our case of interest, differences in the inverse dielectric functions arises from differences
in the FEG density correlation function χ0. We have

ReχR,0q = Reχ0
q (2.62)

ImχR,0q = sgn(q0) Imχ0
q . (2.63)

The relationship between Yq1,q2 and YRq1,q2
is best analysed using their spectral

representations. YRq1,q2
has the same structure as equation (2.24), with ηq replaced by a

positive η [7]. This property leads to the following relations between imaginary and real part
of the time-ordered and retarded Y 0

q1,q2 functions:

Re
(
Y 0
q1,q2

− YR,0q1,q2

)
= J−q2,q3 + J−q3,q2 (2.64)

and

ImYR,0q1,q2
= 1

2

[
sgn

(
q0

1

)
Hq1,−q2 − sgn

(
q0

2

)
H−q2,q1 − sgn

(
q0

3

)
H−q3,q2 + (q2 → q3)

]
.

(2.65)

After some work of rearrangement and taking into account the symmetry properties of the
functions involved, we find that equation (2.61) coincides exactly with equation (2.46). As in
the case of the decay rate of equation (2.60), we find that both equations (2.46) and (2.61) can
be used with inclusion of many-body dynamic local-field corrections. We also note that within
RPA both equations (2.46) and (2.61) reduce to the result derived in references [5]–[9]2.

3. Conclusions

We have developed various many-body theoretical approaches to the quadratic decay rate and
energy loss of charged particles moving in an electron gas, with inclusion of short-range XC
effects.

We have carried out a perturbative formulation of the scattering matrix to derive general
expressions for both the total decay rate and the average energy loss of arbitrary moving charged
particles that are distinguishable from the electrons in the Fermi gas. Simplified expressions
for these quantities have been obtained in the case of heavy probe particles (M  1). The total
decay rate of heavy particles has then been rederived from the knowledge of the probe-particle
self-energy and it has been proved that the stopping power of the heavy particle agrees with
the result deduced using quadratic response theory. Comparison of the different formalisms
for a heavy particle suggests that our results in the scattering formalism can be used with full
inclusion of many-body dynamic local-field corrections.

It has also been shown that while the first-order contributions to the energy loss may be
obtained from the total decay rate by simply inserting the energy transfer inside the integrand
of this quantity, this procedure cannot be generalized to the description of the second-order
energy loss. Since response theory is only valid for heavy particles, this implies that the
stopping power of light particles must be calculated using scattering theory.

2 In reference [9], the difference between the real parts of Y 0
q1,q2

and YR,0q1,q2 (see equation (2.64)) was overlooked.
As a result, the energy loss of equation (2.61) was found, within RPA, to be equivalent to that of equation (2.46), but
with no inclusion of the term f5(q, q1). This term is now found when equation (2.64) is taken into account.
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